MDM4 (MDMX) localizes at the mitochondria and facilitates the p53-mediated intrinsic-apoptotic pathway.

نویسندگان

  • Francesca Mancini
  • Giusy Di Conza
  • Marsha Pellegrino
  • Cinzia Rinaldo
  • Andrea Prodosmo
  • Simona Giglio
  • Igea D'Agnano
  • Fulvio Florenzano
  • Lara Felicioni
  • Fiamma Buttitta
  • Antonio Marchetti
  • Ada Sacchi
  • Alfredo Pontecorvi
  • Silvia Soddu
  • Fabiola Moretti
چکیده

MDM4 is a key regulator of p53, whose biological activities depend on both transcriptional activity and transcription-independent mitochondrial functions. MDM4 binds to p53 and blocks its transcriptional activity; however, the main cytoplasmic localization of MDM4 might also imply a regulation of p53-mitochondrial function. Here, we show that MDM4 stably localizes at the mitochondria, in which it (i) binds BCL2, (ii) facilitates mitochondrial localization of p53 phosphorylated at Ser46 (p53Ser46(P)) and (iii) promotes binding between p53Ser46(P) and BCL2, release of cytochrome C and apoptosis. In agreement with these observations, MDM4 reduction by RNA interference increases resistance to DNA-damage-induced apoptosis in a p53-dependent manner and independently of transcription. Consistent with these findings, a significant downregulation of MDM4 expression associates with cisplatin resistance in human ovarian cancers, and MDM4 modulation affects cisplatin sensitivity of ovarian cancer cells. These data define a new localization and function of MDM4 that, by acting as a docking site for p53Ser46(P) to BCL2, facilitates the p53-mediated intrinsic-apoptotic pathway. Overall, our results point to MDM4 as a double-faced regulator of p53.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Otub1 stabilizes MDMX and promotes its proapoptotic function at the mitochondria

Otub1 regulates p53 stability and activity via non-canonical inhibition of UbcH5, the MDM2 cognate ubiquitin-conjugating enzyme (E2). However, whether Otub1 regulates MDMX stability and activity is not clear. Here we report that Otub1 also suppresses MDM2-mediated MDMX ubiquitination in cells and in vitro, independently of its deubiquitinating enzyme activity. Consequently, overexpression of Ot...

متن کامل

Stress-Induced Alternative Splice Forms of MDM2 and MDMX Modulate the p53-Pathway in Distinct Ways

MDM2 and MDMX are the chief negative regulators of the tumor-suppressor protein p53 and are essential for maintaining homeostasis within the cell. In response to genotoxic stress and also in several cancer types, MDM2 and MDMX are alternatively spliced. The splice variants MDM2-ALT1 and MDMX-ALT2 lack the p53-binding domain and are incapable of negatively regulating p53. However, they retain th...

متن کامل

Effects of Trichostatin A on the Histone Deacetylases (HDACs), Intrinsic Apoptotic Pathway, p21/Waf1/Cip1, and p53 in Human Neuroblastoma, Glioblastoma, Hepatocellular Carcinoma, and Colon Cancer Cell Lines

Background:  The aberrant and altered patterns of gene expression play an important role in the biology of cancer and tumorigenesis. DNA methylation and histone deacetylation are the most studied epigenetic mechanisms. Histone deacetylase inhibitors (HDACIs) such as valproic acid (VPA) and trichostatin A (TSA) are a group of anticancer compounds for the treatment of solid and hematological canc...

متن کامل

Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization.

Activation of p53 tumor suppressor by antagonizing its negative regulator murine double minute (MDM)2 has been considered an attractive strategy for cancer therapy and several classes of p53-MDM2 binding inhibitors have been developed. However, these compounds do not inhibit the p53-MDMX interaction, and their effectiveness can be compromised in tumors overexpressing MDMX. Here, we identify sma...

متن کامل

Alternative Splicing of the p53 Modulators MDM2 and MDM4 Genotoxic Stress Induces Coordinately Regulated

The tumor suppressor protein p53 is a transcription factor that induces G1 arrest of the cell cycle and/or apoptosis. The murine double-minute protein MDM2 and its homologue MDM4 (also known as MDMX) are critical regulators of p53. Altered transcripts of the human homologue of mdm2, MDM2 , have been identified in human tumors, such as invasive carcinoma of the breast, lung carcinoma, and liposa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 28 13  شماره 

صفحات  -

تاریخ انتشار 2009